

# Formally accounting for variability in look-ahead planning

# PI: Martin Fischer RA: Nelly Garcia-Lopez



Field managers need to coordinate the different elements that make up the construction workflow





# In a nutshell

- Problem: Field managers lack a method to predict impact of workflow variability on downstream activities.
- Solution: A method that leverages a model of construction workflow to analyze in-project activity variability and predict its impact.
- Approach: Develop method and model based on literature and input from field managers, validate by testing on a construction project.







# Field managers lack methods to anticipate Variability factor: impact of variability







 Field managers lack methods to anticipate

 Variability factor:
 impact of variability

Manpower availability





# Update from 2014 Seed Project

#### **Case studies:**

- 2 building projects
- Planning meetings
- 2 month period
- Findings:

Field managers lack formal methods for managing variability and estimating its impact.

They rely on their intuition and past experience managing variability.

# Analysis of activity variability data

- Building project Last Planner
- 30,000 activity entries
- Manual data cleanup (240 hrs)
  - Activity type, sub type, Uniformat

#### • Findings:





## Motivating problem: Curtain wall installation

•Field managers considered that the curtain wall procurement and installation activities were critical.

#### Reasons:

- Critical path activity
- Opens up work (e.g., finishes)
- Disrupts ongoing work (6ft staging area around the perimeter)



Source: Genzyme Corp http://www.sotawall.com/portfolio/United%20States/GenzymeCorporation-8568/



# Field managers were concerned about installation outpacing fabrication





# Line of balance view of fabrication vs. installation





# Actual fabrication rate was 20% slower than planned





# Variability forces field managers to make decisions during look-ahead planning





Field managers need to manage variability but lack a formal method to do so



estimate impact



### Theoretical points of departure

1. Workflow model of field construction

- 2. Mechanisms that cause workflow variability
  - i. Variability factors
  - ii. Variability in release of upstream flows
- 3. Conceptual model and theoretical gaps



#### Theoretical points of departure

- 1. Workflow model of field construction
- 2. Mechanisms that cause workflow variability
  - i. Variability factors
  - ii. Variability in release of upstream flows
- 3. Conceptual model and theoretical gaps



### Workflow model

- Workflow: movement of information, materials, and resources through workspaces performing a sequence of activities on components (LCI 2015, Birrell 1980, Darwiche 1988)
- Flow view of production:





### Theoretical points of departure

1. Workflow model of field construction

- 2. Mechanisms that cause workflow variability
  - i. Occurrence of variability factors
  - ii. Variability in release of upstream flows
- 3. Conceptual model and theoretical gaps



Mechanisms that cause workflow variability

#### Occurrence of variability factors

- Large body of knowledge (delay analysis, risk management, lean construction, +40 papers reviewed)
- Most recent compilation Wambeke et al. (2011)
- 50 factors classified into:
  - Labor
  - Tools and Equipment
  - Jobsite
  - Materials and components
  - Information and design
  - External conditions
  - Prerequisite work
  - Management

Matches 7 flows \_ identified by Koskela (1999)



#### Mechanisms that cause workflow variability Variability in release of upstream flows PS AS PF AF Labor Labor -Labor--Workspace--Workspace-Install -Workspace-Fabricate curtain Component-Component--Componentcurtain wall wall -Workspace Information-Information-Labor Information-Prerequisite-Prerequisite -Workspace Prerequisite-Install tie--Component ins -Labor------Labor -Information-Information-Workspace-Install Prerequisite Prerequisite-Componentinterior walls Information-Prerequisite-Legend: PS: Planned Start, AS: Actual Start, Late release of $\bigcirc$ Flow queues PF: Planned Finish, AF: Actual Finish flows 20 **CIFE TAC 2015** Copyright © 2015



### Theoretical points of departure

1. Workflow model of field construction

- 2. Mechanisms that cause workflow variability
  - i. Occurrence of variability factors
  - ii. Variability in release of upstream flows

3. Conceptual model and theoretical gaps



#### Conceptual model and theoretical gaps



Gaps identified:

- (1) What variability factors affect which flows
- (2) How does flow variability lead to activity variability?
- (3) How to measure the components of the model?



## Intuition for Activity Variability Method





# Research methods and tasks

## **Research questions:**

- 1. What variability factors affect which flows?
- 2. How does variability in the flows cause variability in the activity?
- How can and should field managers measure the variability factors, flows, and activity execution?
- 4. How can a computational model allow field managers to predict how variability is propagated to downstream activities?
- How can field managers use the model to manage variability and its impact during lookahead planning?

Theory Case studies Interviews Theory Input from field managers Field validation



# Research methods and tasks

- Method: Theory, case study observations
- **Result:** Model representing activities and flows
- Test: Model verification by field managers
- Method: Structured interviews
- **Result:** Relationship between variability factors and variability in the flows, data availability
- **Result:** Model representing activities, flows, variability mechanisms
- Test: Verify using test cases from interviews
- Method: Theory, input from field managers
- **Inputs:** Model, look-ahead schedule, activity variability data collected (commitment tracking)
- Output: Variability predictions (flows, activities)
- Test: Verify using project variability data
- Method: 4-6 week implantation of method
- **Result:** Record planning interactions, carry out interview after experiment

Carry out interviews Extend model Develop the Activity Variability Method (AVM

Build basic model

Validation: field experiment



## Expected findings

#### • Contributions:

- A formal representation of construction workflow to predict the impact of workflow variability.
- The Activity Variability Method (AVM) which helps field managers anticipate the impact of variability during look-ahead planning.
- Impact:
  - Field managers can implement targeted measures to manage variability, leading to better schedule conformance and project performance.



### Industry involvement

#### Project data

 Activity tracking data of projects using Last Planner containing planned vs. actual start and finish, reasons for non-completion

#### Interviews with field managers

• Structured interviews with superintendents, project engineers, and foremen

#### Feedback and test developed methods

 Field managers willing to evaluate the model representation and the method

#### Field study of Activity Variability Method

• Test the AVM implementation for a period of 4-6 weeks





#### **Risks and mitigation:**

- Difficulty getting project data:
  - Relationship with CIFE members
- Difficulty validating model using project data:
  - Verify model with input from field managers, conduct field experiment



#### Contact: PI: Dr. Martin Fischer (fischer@stanford.edu) RA: Nelly Garcia-Lopez (ngarcial@stanford.edu)

Thank you! Questions? Suggestions?